I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.Star" "HOL-IMP.BExp" begin datatype com = SKIP | Assign vname aexp ("_ ::= _" [1000, 61] 61) | Seq com com ("_;;/ _" [60, 61] 60) | If bexp com com ("(IF _/ THEN _/ ELSE _)" [0, 0, 61] 61) | Loop nat com ("(LOOP _/ DO _)" [0, 61] 61) end
theory Submission imports Defs begin section \<open>IMP\<close> text \<open> Consider a modification of IMP (@{typ com}) with loops of the form "\<open>LOOP n DO c\<close>", where \<open>c\<close> is an IMP program and \<open>n\<close> a natural number denoting the number of times the program \<open>c\<close> should be executed. Complete the big-step semantics for this language by providing the missing rules for the loop constructor. Do not modify the pre-defined big-step rules! \<close> inductive big_step :: "com \<times> state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55) where Skip: "(SKIP,s) \<Rightarrow> s" | Assign: "(x ::= a,s) \<Rightarrow> s(x := aval a s)" | Seq: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> s\<^sub>2; (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3" | IfTrue: "\<lbrakk> bval b s; (c\<^sub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" | IfFalse: "\<lbrakk> \<not>bval b s; (c\<^sub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" | declare big_step.intros [intro] inductive_cases SkipE[elim!]: "(SKIP,s) \<Rightarrow> t" inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t" inductive_cases SeqE[elim!]: "(c1;;c2,s1) \<Rightarrow> s3" inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t" text \<open> Now complete the small-step semantics by providing \<^emph>\<open>one single missing rule\<close> for the loop constructor. Do not modify the pre-defined small-step rules and do not use more than one rule! Your new rule must: \<^item> be properly small-step; that is, do not re-use the big-step semantics, only do a single step, etc. \<^item> not use Isabelle/HOL case analyses. In particular, do not use "@{term "if b then x else y"}" and "\<open>case x of ...\<close>"; but you may very well use the other IMP constructors. \<close> inductive small_step :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>" 55) where Assign: "(x ::= a, s) \<rightarrow> (SKIP, s(x := aval a s))" | Seq1: "(SKIP;;c\<^sub>2,s) \<rightarrow> (c\<^sub>2,s)" | Seq2: "(c\<^sub>1,s) \<rightarrow> (c\<^sub>1',s') \<Longrightarrow> (c\<^sub>1;;c\<^sub>2,s) \<rightarrow> (c\<^sub>1';;c\<^sub>2,s')" | IfTrue: "bval b s \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2,s) \<rightarrow> (c\<^sub>1,s)" | IfFalse: "\<not>bval b s \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2,s) \<rightarrow> (c\<^sub>2,s)" | text \<open> Next show the equivalence between your big-step and small-step semantics by filling out the missing proof steps below. \<close> abbreviation small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>*" 55) where "x \<rightarrow>* y == star small_step x y" declare small_step.intros[simp,intro] inductive_cases sSkipE[elim!]: "(SKIP,s) \<rightarrow> ct" inductive_cases sAssignE[elim!]: "(x::=a,s) \<rightarrow> ct" inductive_cases sSeqE[elim]: "(c1;;c2,s) \<rightarrow> ct" inductive_cases sIfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<rightarrow> ct" lemma star_seq2: "(c1,s) \<rightarrow>* (c1',s') \<Longrightarrow> (c1;;c2,s) \<rightarrow>* (c1';;c2,s')" proof(induction rule: star_induct) case refl thus ?case by simp next case step thus ?case by (metis Seq2 star.step) qed lemma seq_comp [intro]: "\<lbrakk> (c1,s1) \<rightarrow>* (SKIP,s2); (c2,s2) \<rightarrow>* (SKIP,s3) \<rbrakk> \<Longrightarrow> (c1;;c2, s1) \<rightarrow>* (SKIP,s3)" by (blast intro: star.step star_seq2 star_trans) declare star.step[intro] lemma big_to_small: "cs \<Rightarrow> t \<Longrightarrow> cs \<rightarrow>* (SKIP,t)" sorry lemma small1_big_continue: "cs \<rightarrow> cs' \<Longrightarrow> cs' \<Rightarrow> t \<Longrightarrow> cs \<Rightarrow> t" by (induction arbitrary: t rule: small_step.induct) auto lemma small_to_big: "cs \<rightarrow>* (SKIP,t) \<Longrightarrow> cs \<Rightarrow> t" sorry text \<open>And finally, prove that all programs terminate:\<close> lemma terminates: "\<exists>t. (c, s) \<Rightarrow> t" sorry end
theory Check imports Submission begin end