Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 10

This is the task corresponding to homework 10.

Resources

Download Files

Definitions File

theory Defs
  imports Main
begin

type_synonym vname = string
type_synonym val = int
type_synonym state = "vname \<Rightarrow> val"

datatype aexp
 = N int | V vname | Plus aexp aexp
 | Minus aexp aexp | Mul aexp aexp | Div aexp aexp

fun aval :: "aexp \<Rightarrow> state \<Rightarrow> val" where
"aval (N n) s = n" |
"aval (V x) s = s x" |
"aval (Plus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s + aval a\<^sub>2 s" |
"aval (Div a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s div aval a\<^sub>2 s" |
"aval (Mul a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s * aval a\<^sub>2 s" |
"aval (Minus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s - aval a\<^sub>2 s"


definition null_state ("<>") where
  "null_state \<equiv> \<lambda>x. 0"
syntax
  "_State" :: "updbinds => 'a" ("<_>")
translations
  "_State ms" == "_Update <> ms"
  "_State (_updbinds b bs)" <= "_Update (_State b) bs"

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

fun bval :: "bexp \<Rightarrow> state \<Rightarrow> bool" where
"bval (Bc v) s = v" |
"bval (Not b) s = (\<not> bval b s)" |
"bval (And b\<^sub>1 b\<^sub>2) s = (bval b\<^sub>1 s \<and> bval b\<^sub>2 s)" |
"bval (Less a\<^sub>1 a\<^sub>2) s = (aval a\<^sub>1 s < aval a\<^sub>2 s)"

datatype
  com = SKIP
      | Assign vname aexp       ("_ ::= _" [1000, 61] 61)
      | Seq    com  com         ("_;;/ _"  [60, 61] 60)
      | If     bexp com com     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
      | While  bexp com         ("(WHILE _/ DO _)"  [0, 61] 61)

inductive
  big_step :: "com \<times> state \<Rightarrow> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55)
where
Skip: "(SKIP,s) \<Rightarrow> s" |
Assign: "(x ::= a,s) \<Rightarrow> s(x := aval a s)" |
Seq: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> s\<^sub>2;  (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3" |
IfTrue: "\<lbrakk> bval b s;  (c\<^sub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
IfFalse: "\<lbrakk> \<not>bval b s;  (c\<^sub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> s" |
WhileTrue:
"\<lbrakk> bval b s\<^sub>1;  (c,s\<^sub>1) \<Rightarrow> s\<^sub>2;  (WHILE b DO c, s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk>
\<Longrightarrow> (WHILE b DO c, s\<^sub>1) \<Rightarrow> s\<^sub>3"

code_pred big_step .

declare big_step.intros [intro]
lemmas big_step_induct = big_step.induct[split_format(complete)]
thm big_step_induct

inductive_cases SkipE[elim!]: "(SKIP,s) \<Rightarrow> t"
thm SkipE
inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t"
thm AssignE
inductive_cases SeqE[elim!]: "(c1;;c2,s1) \<Rightarrow> s3"
thm SeqE
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t"
thm IfE

inductive_cases WhileE[elim]: "(WHILE b DO c,s) \<Rightarrow> t"
thm WhileE

theorem big_step_determ: "\<lbrakk> (c,s) \<Rightarrow> t; (c,s) \<Rightarrow> u \<rbrakk> \<Longrightarrow> u = t"
  by (induction arbitrary: u rule: big_step.induct) blast+

abbreviation
  equiv_c :: "com \<Rightarrow> com \<Rightarrow> bool" (infix "\<sim>" 50) where
  "c \<sim> c' \<equiv> (\<forall>s t. (c,s) \<Rightarrow> t  =  (c',s) \<Rightarrow> t)"

lemma unfold_while:
  "(WHILE b DO c) \<sim> (IF b THEN c;; WHILE b DO c ELSE SKIP)" (is "?w \<sim> ?iw")
proof -
  have "(?iw, s) \<Rightarrow> t" if assm: "(?w, s) \<Rightarrow> t" for s t
  proof -
    from assm show ?thesis
    proof cases
      case WhileFalse
      thus ?thesis by blast
    next
      case WhileTrue
      from \<open>bval b s\<close> \<open>(?w, s) \<Rightarrow> t\<close> obtain s' where
        "(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
      hence "(c;; ?w, s) \<Rightarrow> t" by (rule Seq)
      with \<open>bval b s\<close> show ?thesis by (rule IfTrue)
    qed
  qed
  moreover
  have "(?w, s) \<Rightarrow> t" if assm: "(?iw, s) \<Rightarrow> t" for s t
  proof -
    from assm show ?thesis
    proof cases
      case IfFalse
      hence "s = t" using \<open>(?iw, s) \<Rightarrow> t\<close> by blast
      thus ?thesis using \<open>\<not>bval b s\<close> by blast
    next
      case IfTrue
      from \<open>(c;; ?w, s) \<Rightarrow> t\<close> obtain s' where
        "(c, s) \<Rightarrow> s'" and "(?w, s') \<Rightarrow> t" by auto
      with \<open>bval b s\<close> show ?thesis by (rule WhileTrue)
    qed
  qed
  ultimately
  show ?thesis by blast
qed

paragraph "Hoare"

type_synonym assn = "state \<Rightarrow> bool"

abbreviation state_subst :: "state \<Rightarrow> aexp \<Rightarrow> vname \<Rightarrow> state"
  ("_[_'/_]" [1000,0,0] 999)
where "s[a/x] == s(x := aval a s)"

paragraph "Partial correctness"

definition
hoare_valid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile> {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile> {P}c{Q} = (\<forall>s t. P s \<and> (c,s) \<Rightarrow> t  \<longrightarrow>  Q t)"

inductive
  hoare :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile> ({(1_)}/ (_)/ {(1_)})" 50)
where
Skip: "\<turnstile> {P} SKIP {P}"  |

Assign:  "\<turnstile> {\<lambda>s. P(s[a/x])} x::=a {P}"  |

Seq: "\<lbrakk> \<turnstile> {P} c\<^sub>1 {Q};  \<turnstile> {Q} c\<^sub>2 {R} \<rbrakk>
      \<Longrightarrow> \<turnstile> {P} c\<^sub>1;;c\<^sub>2 {R}"  |

If: "\<lbrakk> \<turnstile> {\<lambda>s. P s \<and> bval b s} c\<^sub>1 {Q};  \<turnstile> {\<lambda>s. P s \<and> \<not> bval b s} c\<^sub>2 {Q} \<rbrakk>
     \<Longrightarrow> \<turnstile> {P} IF b THEN c\<^sub>1 ELSE c\<^sub>2 {Q}"  |

While: "\<turnstile> {\<lambda>s. P s \<and> bval b s} c {P} \<Longrightarrow>
        \<turnstile> {P} WHILE b DO c {\<lambda>s. P s \<and> \<not> bval b s}"  |

conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s;  \<turnstile> {P} c {Q};  \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk>
        \<Longrightarrow> \<turnstile> {P'} c {Q'}"

lemmas [simp] = hoare.Skip hoare.Assign hoare.Seq If

lemmas [intro!] = hoare.Skip hoare.Assign hoare.Seq hoare.If

lemma strengthen_pre:
  "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s;  \<turnstile> {P} c {Q} \<rbrakk> \<Longrightarrow> \<turnstile> {P'} c {Q}"
by (blast intro: conseq)

lemma weaken_post:
  "\<lbrakk> \<turnstile> {P} c {Q};  \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow>  \<turnstile> {P} c {Q'}"
  by (blast intro: conseq)

lemma Assign': "\<forall>s. P s \<longrightarrow> Q(s[a/x]) \<Longrightarrow> \<turnstile> {P} x ::= a {Q}"
by (simp add: strengthen_pre[OF _ Assign])

lemma While':
assumes "\<turnstile> {\<lambda>s. P s \<and> bval b s} c {P}" and "\<forall>s. P s \<and> \<not> bval b s \<longrightarrow> Q s"
shows "\<turnstile> {P} WHILE b DO c {Q}"
by(rule weaken_post[OF While[OF assms(1)] assms(2)])


definition wp :: "com \<Rightarrow> assn \<Rightarrow> assn" where
"wp c Q = (\<lambda>s. \<forall>t. (c,s) \<Rightarrow> t  \<longrightarrow>  Q t)"

lemma wp_SKIP[simp]: "wp SKIP Q = Q"
by (rule ext) (auto simp: wp_def)

lemma wp_Ass[simp]: "wp (x::=a) Q = (\<lambda>s. Q(s[a/x]))"
by (rule ext) (auto simp: wp_def)

lemma wp_Seq[simp]: "wp (c\<^sub>1;;c\<^sub>2) Q = wp c\<^sub>1 (wp c\<^sub>2 Q)"
by (rule ext) (auto simp: wp_def)

lemma wp_If[simp]:
 "wp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q =
 (\<lambda>s. if bval b s then wp c\<^sub>1 Q s else wp c\<^sub>2 Q s)"
by (rule ext) (auto simp: wp_def)

lemma wp_While_If:
 "wp (WHILE b DO c) Q s =
  wp (IF b THEN c;;WHILE b DO c ELSE SKIP) Q s"
unfolding wp_def by (metis unfold_while)

lemma wp_While_True[simp]: "bval b s \<Longrightarrow>
  wp (WHILE b DO c) Q s = wp (c;; WHILE b DO c) Q s"
by(simp add: wp_While_If)

lemma wp_While_False[simp]: "\<not> bval b s \<Longrightarrow> wp (WHILE b DO c) Q s = Q s"
by(simp add: wp_While_If)

lemma wp_is_pre: "\<turnstile> {wp c Q} c {Q}"
proof(induction c arbitrary: Q)
  case If thus ?case by(auto intro: hoare.conseq)
next
  case (While b c)
  let ?w = "WHILE b DO c"
  show "\<turnstile> {wp ?w Q} ?w {Q}"
  proof(rule While')
    show "\<turnstile> {\<lambda>s. wp ?w Q s \<and> bval b s} c {wp ?w Q}"
    proof(rule strengthen_pre[OF _ While.IH])
      show "\<forall>s. wp ?w Q s \<and> bval b s \<longrightarrow> wp c (wp ?w Q) s" by auto
    qed
    show "\<forall>s. wp ?w Q s \<and> \<not> bval b s \<longrightarrow> Q s" by auto
  qed
qed auto

lemma hoare_complete: assumes "\<Turnstile> {P}c{Q}" shows "\<turnstile> {P}c{Q}"
proof(rule strengthen_pre)
  show "\<forall>s. P s \<longrightarrow> wp c Q s" using assms
    by (auto simp: hoare_valid_def wp_def)
  show "\<turnstile> {wp c Q} c {Q}" by(rule wp_is_pre)
qed

paragraph "Annotated commands"

datatype acom =
  Askip                  ("SKIP") |
  Aassign vname aexp     ("(_ ::= _)" [1000, 61] 61) |
  Aseq   acom acom       ("_;;/ _"  [60, 61] 60) |
  Aif bexp acom acom     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61) |
  Awhile assn bexp acom
    ("({_}/ WHILE _/ DO _)"  [0, 0, 61] 61)

bundle ACOM begin
no_notation SKIP ("SKIP")
no_notation Assign ("_ ::= _" [1000, 61] 61)
no_notation Seq    ("_;;/ _"  [60, 61] 60)
no_notation If ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
notation Askip ("SKIP")
notation Aassign ("(_ ::= _)" [1000, 61] 61)
notation Aseq ("_;;/ _"  [60, 61] 60)
notation Aif ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
end

bundle COM begin
no_notation Askip ("SKIP")
no_notation Aassign ("(_ ::= _)" [1000, 61] 61)
no_notation Aseq ("_;;/ _"  [60, 61] 60)
no_notation Aif ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
notation SKIP ("SKIP")
notation Assign ("_ ::= _" [1000, 61] 61)
notation Seq    ("_;;/ _"  [60, 61] 60)
notation If ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
end

unbundle ACOM

fun strip :: "acom \<Rightarrow> com" where
"strip SKIP = com.SKIP" |
"strip (x ::= a) = com.Assign x a" |
"strip (C\<^sub>1;; C\<^sub>2) = com.Seq (strip C\<^sub>1) (strip C\<^sub>2)" |
"strip (IF b THEN C\<^sub>1 ELSE C\<^sub>2) = com.If b (strip C\<^sub>1) (strip C\<^sub>2)" |
"strip ({_} WHILE b DO C) = com.While b (strip C)"

paragraph "VCG for partial correctness"

fun pre :: "acom \<Rightarrow> assn \<Rightarrow> assn" where
"pre SKIP Q = Q" |
"pre (x ::= a) Q = (\<lambda>s. Q(s(x := aval a s)))" |
"pre (C\<^sub>1;; C\<^sub>2) Q = pre C\<^sub>1 (pre C\<^sub>2 Q)" |
"pre (IF b THEN C\<^sub>1 ELSE C\<^sub>2) Q =
  (\<lambda>s. if bval b s then pre C\<^sub>1 Q s else pre C\<^sub>2 Q s)" |
"pre ({I} WHILE b DO C) Q = I"

fun vc :: "acom \<Rightarrow> assn \<Rightarrow> bool" where
"vc SKIP Q = True" |
"vc (x ::= a) Q = True" |
"vc (C\<^sub>1;; C\<^sub>2) Q = (vc C\<^sub>1 (pre C\<^sub>2 Q) \<and> vc C\<^sub>2 Q)" |
"vc (IF b THEN C\<^sub>1 ELSE C\<^sub>2) Q = (vc C\<^sub>1 Q \<and> vc C\<^sub>2 Q)" |
"vc ({I} WHILE b DO C) Q =
  ((\<forall>s. (I s \<and> bval b s \<longrightarrow> pre C I s) \<and>
        (I s \<and> \<not> bval b s \<longrightarrow> Q s)) \<and>
    vc C I)"

lemma vc_sound: "vc C Q \<Longrightarrow> \<turnstile> {pre C Q} strip C {Q}"
proof(induction C arbitrary: Q)
  case (Awhile I b C)
  show ?case
  proof(simp, rule While')
    from \<open>vc (Awhile I b C) Q\<close>
    have vc: "vc C I" and IQ: "\<forall>s. I s \<and> \<not> bval b s \<longrightarrow> Q s" and
         pre: "\<forall>s. I s \<and> bval b s \<longrightarrow> pre C I s" by simp_all
    have "\<turnstile> {pre C I} strip C {I}" by(rule Awhile.IH[OF vc])
    with pre show "\<turnstile> {\<lambda>s. I s \<and> bval b s} strip C {I}"
      by(rule strengthen_pre)
    show "\<forall>s. I s \<and> \<not>bval b s \<longrightarrow> Q s" by(rule IQ)
  qed
qed (auto intro: conseq)

corollary vc_sound':
  "\<lbrakk> vc C Q; \<forall>s. P s \<longrightarrow> pre C Q s \<rbrakk> \<Longrightarrow> \<turnstile> {P} strip C {Q}"
by (metis strengthen_pre vc_sound)

unbundle COM

paragraph "Program:"

definition neq :: "aexp \<Rightarrow> aexp \<Rightarrow> bexp" where
  "neq a\<^sub>1 a\<^sub>2 \<equiv> Not (And (Not (Less a\<^sub>1 a\<^sub>2)) (Not (Less a\<^sub>2 a\<^sub>1)))"

lemma bval_neq_eq[simp]: "bval (neq a\<^sub>1 a\<^sub>2) s = (aval a\<^sub>1 s \<noteq> aval a\<^sub>2 s)"
  unfolding neq_def by auto

definition "EGGT :: com \<equiv>
''old_r'' ::= V ''a'';;
''r'' ::= V ''b'';;

''old_s'' ::= N 1;;
''s'' ::= N 0;;

''old_t'' ::= N 0;;
''t'' ::= N 1;;

WHILE neq (V ''r'') (N 0) DO (
  ''quotient'' ::= Div (V ''old_r'') (V ''r'');;

  ''tmp'' ::= V ''old_r'';;
  ''old_r'' ::= V ''r'';;
  ''r'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''r''));;

  ''tmp'' ::= V ''old_s'';;
  ''old_s'' ::= V ''s'';;
  ''s'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''s''));;

  ''tmp'' ::= V ''old_t'';;
  ''old_t'' ::= V ''t'';;
  ''t'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''t''))
)"



end

Template File

theory Submission
  imports Defs
begin

unbundle ACOM

definition AEGGT_annot :: "state \<Rightarrow> acom" where
lemma AEGGT_annot_strip: "strip (AEGGT_annot s\<^sub>0) = EGGT"
  sorry

theorem EGGT_correct:  "\<turnstile>
  {\<lambda>s. s = s\<^sub>0 \<and> s\<^sub>0 ''a'' > 0 \<and> s\<^sub>0 ''b'' > 0}
  EGGT
  {\<lambda>s. s ''old_r'' = gcd (s\<^sub>0 ''a'') (s\<^sub>0 ''b'')
    \<and> gcd (s\<^sub>0 ''a'') (s\<^sub>0 ''b'') = s\<^sub>0 ''a'' * s ''old_s'' + s\<^sub>0 ''b'' * s ''old_t'' }"
  sorry

end

Check File

theory Check
  imports Submission
begin

lemma AEGGT_annot_strip: "strip (AEGGT_annot s\<^sub>0) = EGGT"
  by (rule Submission.AEGGT_annot_strip)

theorem EGGT_correct: "\<turnstile>
  {\<lambda>s. s = s\<^sub>0 \<and> s\<^sub>0 ''a'' > 0 \<and> s\<^sub>0 ''b'' > 0}
  EGGT
  {\<lambda>s. s ''old_r'' = gcd (s\<^sub>0 ''a'') (s\<^sub>0 ''b'')
    \<and> gcd (s\<^sub>0 ''a'') (s\<^sub>0 ''b'') = s\<^sub>0 ''a'' * s ''old_s'' + s\<^sub>0 ''b'' * s ''old_t'' }"
  by (rule Submission.EGGT_correct)

end

Terms and Conditions