Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Homework 9

This is the task corresponding to homework 9.

Resources

Download Files

Definitions File

theory Defs
  imports "HOL-IMP.BExp"
begin

datatype
  com = SKIP
      | Assign vname aexp       ("_ ::= _" [1000, 61] 61)
      | Seq    com  com         ("_;;/ _"  [60, 61] 60)
      | If     bexp com com     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61)
      | While  bexp com         ("(WHILE _/ DO _)"  [0, 61] 61)
      | CONTINUE
  inductive
    big_step :: "com \<times> state \<Rightarrow> bool \<times> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55)
  where
  Skip: "(SKIP,s) \<Rightarrow> (False,s)" |
  Assign: "(x ::= a,s) \<Rightarrow> (False,s(x := aval a s))" |
  Seq1: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> (False,s\<^sub>2);  (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3" |
  Seq2: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> (True,s\<^sub>2) \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> (True,s\<^sub>2)" |
  IfTrue: "\<lbrakk> bval b s;  (c\<^sub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
  IfFalse: "\<lbrakk> \<not>bval b s;  (c\<^sub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" |
  WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> (False,s)" |
  WhileTrue:
  "\<lbrakk> bval b s\<^sub>1;  (c,s\<^sub>1) \<Rightarrow> (_, s\<^sub>2);  (WHILE b DO c, s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk>
  \<Longrightarrow> (WHILE b DO c, s\<^sub>1) \<Rightarrow> s\<^sub>3" | \<comment> \<open>We can simply reset the continue flag in a while loop\<close>
  Continue: "(CONTINUE,s) \<Rightarrow> (True,s)"

declare big_step.intros [intro]
lemmas big_step_induct = big_step.induct[split_format(complete)]
inductive_cases SkipE[elim!]: "(SKIP,s) \<Rightarrow> t"
inductive_cases ContinueE[elim!]: "(CONTINUE,s) \<Rightarrow> t"
inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t"
inductive_cases SeqE[elim!]: "(c1;;c2,s1) \<Rightarrow> s3"
inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t"
inductive_cases WhileE[elim]: "(WHILE b DO c,s) \<Rightarrow> t"

abbreviation state_subst :: "state \<Rightarrow> aexp \<Rightarrow> vname \<Rightarrow> state"
  ("_[_'/_]" [1000,0,0] 999)
where "s[a/x] == s(x := aval a s)"

type_synonym assn = "state \<Rightarrow> bool"

definition
hoare_valid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile> {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile> {P}c{Q} = (\<forall>s f t. P s \<and> (c,s) \<Rightarrow> (f, t)  \<longrightarrow>  Q t)"

definition
hoare_valid\<^sub>c :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>c{(1_)}/ {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile>\<^sub>c{I} {P}c{Q} = (\<forall>s f t. P s \<and> (c,s) \<Rightarrow> (f, t)  \<longrightarrow> (if f then I t else Q t))"

consts hoare :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool"

consts wp :: "com \<Rightarrow> assn \<Rightarrow> assn \<Rightarrow> assn"

end

Template File

theory Submission
  imports Defs
begin

inductive
  hoare :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>{(1_)}/ ({(1_)}/ (_)/ {(1_)})" 50)
where
Skip: "\<turnstile>{I} {P} SKIP {P}"  |
Assign:  "\<turnstile>{I} {\<lambda>s. P(s[a/x])} x::=a {P}"  |
Seq: "\<lbrakk> \<turnstile>{I} {P} c\<^sub>1 {Q};  \<turnstile>{I} {Q} c\<^sub>2 {R} \<rbrakk>
      \<Longrightarrow> \<turnstile>{I} {P} c\<^sub>1;;c\<^sub>2 {R}"  |
If: "\<lbrakk> \<turnstile>{I} {\<lambda>s. P s \<and> bval b s} c\<^sub>1 {Q};  \<turnstile>{I} {\<lambda>s. P s \<and> \<not> bval b s} c\<^sub>2 {Q} \<rbrakk>
     \<Longrightarrow> \<turnstile>{I} {P} IF b THEN c\<^sub>1 ELSE c\<^sub>2 {Q}"  |
conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s;  \<turnstile>{I} {P} c {Q};  \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk>
        \<Longrightarrow> \<turnstile>{I} {P'} c {Q'}" |
\<comment> \<open>Add your cases here\<close>
theorem hoare_sound: "\<turnstile>{I} {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>c{I} {P}c{Q}"
  sorry

definition wp :: "com \<Rightarrow> assn \<Rightarrow> assn \<Rightarrow> assn"  where
  "wp _ = undefined"

lemma hoare_complete: assumes "\<Turnstile> {P}c{Q}"
  shows "\<turnstile>{Q} {P}c{Q}"
  sorry

theorem hoare_sound_complete: "\<turnstile>{Q} {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q}"
  sorry

end

Check File

theory Check
  imports Submission
begin

theorem hoare_sound: "\<turnstile>{I} {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>c{I} {P}c{Q}"
  by (rule Submission.hoare_sound)

lemma hoare_complete: "(\<Turnstile> {P}c{Q}) \<Longrightarrow> \<turnstile>{Q} {P}c{Q}"
  by (rule Submission.hoare_complete)

theorem hoare_sound_complete: "\<turnstile>{Q} {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q}"
  by (rule Submission.hoare_sound_complete)

end

Terms and Conditions