I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports "HOL-IMP.BExp" begin datatype com = SKIP | Assign vname aexp ("_ ::= _" [1000, 61] 61) | Seq com com ("_;;/ _" [60, 61] 60) | If bexp com com ("(IF _/ THEN _/ ELSE _)" [0, 0, 61] 61) | While bexp com ("(WHILE _/ DO _)" [0, 61] 61) | CONTINUE inductive big_step :: "com \<times> state \<Rightarrow> bool \<times> state \<Rightarrow> bool" (infix "\<Rightarrow>" 55) where Skip: "(SKIP,s) \<Rightarrow> (False,s)" | Assign: "(x ::= a,s) \<Rightarrow> (False,s(x := aval a s))" | Seq1: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> (False,s\<^sub>2); (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3" | Seq2: "\<lbrakk> (c\<^sub>1,s\<^sub>1) \<Rightarrow> (True,s\<^sub>2) \<rbrakk> \<Longrightarrow> (c\<^sub>1;;c\<^sub>2, s\<^sub>1) \<Rightarrow> (True,s\<^sub>2)" | IfTrue: "\<lbrakk> bval b s; (c\<^sub>1,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" | IfFalse: "\<lbrakk> \<not>bval b s; (c\<^sub>2,s) \<Rightarrow> t \<rbrakk> \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t" | WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> (False,s)" | WhileTrue: "\<lbrakk> bval b s\<^sub>1; (c,s\<^sub>1) \<Rightarrow> (_, s\<^sub>2); (WHILE b DO c, s\<^sub>2) \<Rightarrow> s\<^sub>3 \<rbrakk> \<Longrightarrow> (WHILE b DO c, s\<^sub>1) \<Rightarrow> s\<^sub>3" | \<comment> \<open>We can simply reset the continue flag in a while loop\<close> Continue: "(CONTINUE,s) \<Rightarrow> (True,s)" declare big_step.intros [intro] lemmas big_step_induct = big_step.induct[split_format(complete)] inductive_cases SkipE[elim!]: "(SKIP,s) \<Rightarrow> t" inductive_cases ContinueE[elim!]: "(CONTINUE,s) \<Rightarrow> t" inductive_cases AssignE[elim!]: "(x ::= a,s) \<Rightarrow> t" inductive_cases SeqE[elim!]: "(c1;;c2,s1) \<Rightarrow> s3" inductive_cases IfE[elim!]: "(IF b THEN c1 ELSE c2,s) \<Rightarrow> t" inductive_cases WhileE[elim]: "(WHILE b DO c,s) \<Rightarrow> t" abbreviation state_subst :: "state \<Rightarrow> aexp \<Rightarrow> vname \<Rightarrow> state" ("_[_'/_]" [1000,0,0] 999) where "s[a/x] == s(x := aval a s)" type_synonym assn = "state \<Rightarrow> bool" definition hoare_valid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile> {(1_)}/ (_)/ {(1_)}" 50) where "\<Turnstile> {P}c{Q} = (\<forall>s f t. P s \<and> (c,s) \<Rightarrow> (f, t) \<longrightarrow> Q t)" definition hoare_valid\<^sub>c :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>c{(1_)}/ {(1_)}/ (_)/ {(1_)}" 50) where "\<Turnstile>\<^sub>c{I} {P}c{Q} = (\<forall>s f t. P s \<and> (c,s) \<Rightarrow> (f, t) \<longrightarrow> (if f then I t else Q t))" consts hoare :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" consts wp :: "com \<Rightarrow> assn \<Rightarrow> assn \<Rightarrow> assn" end
theory Submission imports Defs begin inductive hoare :: "assn \<Rightarrow> assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>{(1_)}/ ({(1_)}/ (_)/ {(1_)})" 50) where Skip: "\<turnstile>{I} {P} SKIP {P}" | Assign: "\<turnstile>{I} {\<lambda>s. P(s[a/x])} x::=a {P}" | Seq: "\<lbrakk> \<turnstile>{I} {P} c\<^sub>1 {Q}; \<turnstile>{I} {Q} c\<^sub>2 {R} \<rbrakk> \<Longrightarrow> \<turnstile>{I} {P} c\<^sub>1;;c\<^sub>2 {R}" | If: "\<lbrakk> \<turnstile>{I} {\<lambda>s. P s \<and> bval b s} c\<^sub>1 {Q}; \<turnstile>{I} {\<lambda>s. P s \<and> \<not> bval b s} c\<^sub>2 {Q} \<rbrakk> \<Longrightarrow> \<turnstile>{I} {P} IF b THEN c\<^sub>1 ELSE c\<^sub>2 {Q}" | conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>{I} {P} c {Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile>{I} {P'} c {Q'}" | \<comment> \<open>Add your cases here\<close> theorem hoare_sound: "\<turnstile>{I} {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>c{I} {P}c{Q}" sorry definition wp :: "com \<Rightarrow> assn \<Rightarrow> assn \<Rightarrow> assn" where "wp _ = undefined" lemma hoare_complete: assumes "\<Turnstile> {P}c{Q}" shows "\<turnstile>{Q} {P}c{Q}" sorry theorem hoare_sound_complete: "\<turnstile>{Q} {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q}" sorry end
theory Check imports Submission begin theorem hoare_sound: "\<turnstile>{I} {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>c{I} {P}c{Q}" by (rule Submission.hoare_sound) lemma hoare_complete: "(\<Turnstile> {P}c{Q}) \<Longrightarrow> \<turnstile>{Q} {P}c{Q}" by (rule Submission.hoare_complete) theorem hoare_sound_complete: "\<turnstile>{Q} {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q}" by (rule Submission.hoare_sound_complete) end