I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.
theory Defs imports Main "~~/src/HOL/Data_Structures/AVL_Set" begin fun fib_tree :: "nat \<Rightarrow> unit avl_tree" where "fib_tree 0 = Leaf" | "fib_tree (Suc 0) = Node Leaf () 1 Leaf" | "fib_tree (Suc(Suc n)) = Node (fib_tree (Suc n)) () (Suc(Suc(n))) (fib_tree n)" datatype 'a itree = iLeaf | iNode "'a itree" "'a \<times> 'a" "'a itree" fun set_itree2:: "'a::ord itree \<Rightarrow> 'a set" where "set_itree2 iLeaf = {}" | "set_itree2 (iNode l (low, high) r) = {low .. high} \<union> ((set_itree2 l) \<union> (set_itree2 r))" fun set_itree3:: "'a itree \<Rightarrow> ('a \<times> 'a) set" where "set_itree3 iLeaf = {}" | "set_itree3 (iNode l (low, high) r) = {(low, high)} \<union> ((set_itree3 l) \<union> (set_itree3 r))" end
theory Submission imports Defs begin lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t" sorry fun ibst :: "'a::linorder itree \<Rightarrow> bool" where "ibst _ = undefined" fun delete :: "int \<Rightarrow> int itree \<Rightarrow> int itree" where "delete _ = undefined" value "delete 3 (iNode (iNode (iNode iLeaf (Interval 0 0) iLeaf) (Interval 1 1) (iNode iLeaf (Interval 2 4) iLeaf)) (Interval (5::nat) 6) (iLeaf)) = iNode (iNode (iNode iLeaf (Interval 0 0) iLeaf) (Interval 1 1) (iNode iLeaf (Interval 2 2) (iNode iLeaf (Interval 4 4) iLeaf))) (Interval 5 6) iLeaf" lemma delete_set_minus: "ibst t \<Longrightarrow> set_itree2 (delete x t) = (set_itree2 t) - {x}" sorry lemma delete_ibst: "ibst t \<Longrightarrow> ibst (delete x t)" sorry end
theory Check imports Submission begin lemma fib_tree_minimal: "avl t \<Longrightarrow> size1 (fib_tree (ht t)) \<le> size1 t" by(rule fib_tree_minimal) lemma delete_set_minus: "ibst t \<Longrightarrow> set_itree2 (delete x t) = (set_itree2 t) - {x}" by(rule delete_set_minus) lemma delete_ibst: "ibst t \<Longrightarrow> ibst (delete x t)" by(rule delete_ibst) end